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PHASE SHIFTS AND THE QUANTUM MECHANICAL HAMILTON-JACOBI EQUATION

A numerical method of determining phase shifts may be based on
the fact that although the wave function of a system may vary
rapidly with the separation distance between the particles, the
real and imaginary parts cf the Hamilitcn-Jacobi representation of
the wave function are slowly varying functions of the separation
except in the region of a turning point. Using this fact, one may
often use large step sizes in the integratione and thereby evaluate
the phase shifts expeditiously.

In the present development as in the W.K.B. approach, the
Ricatti substitution is made to obtain the quantum mechanical
Hamilton-Jacobi equationl for the function é;(yl*, . The
function \SZﬂij has both real and imaginary parts corresponding
to the phase and amplitude of the wave function, respectively. In
the asymptotic region, the wave function is described by the W.K.B.
approximation and one may use this as a first approximation in
starting the computation. However, once the computation is started,
the exact equations are used so that the resulting solution is
equivalent to that obtained by solving the original Schroedinger
equation. The solution corresponding to a satisfactory wave
function must vanish at the origin. This suffices to determine
one of the two arbitrary constants in the solution; the remaining

constant fixes the normalization. The absolute phase shifts are

1. The substitution L(n¥ = Q"S(n*)/A* is quite general and
the resulting equation for S¢A%* is termed a '"Ricatti equation'.
See, e.g., Birkhoff and Rota, Ordinary Differential Equations
(Ginn, Boston, 1962).




then determined from the asymptotic form of the wave function.

1. The quantum mechanical Hamilton-Jacobi equation and the phase shifts

We restrict our attention to the scattering of two structureless
particles interacting through a central potential. This process
may be described by considering an equivalent single particle of
reduced mass YY) scattered by a fixed center of force. The potential

of interaction is taken to be of the form

pin) = € f(nse) (1)

where the f([l*) is defined in the usual manner, so that the
potential is zero at fl= ¢ and has a minimum value of = €
The radial Schroedinger equation describing the scattering process

. . 2
may be written in the form

dzu' *2- ) 2 -
aon P ﬂ/{:i i %; fin) w6 =0 &

where ,L is the angular momentum quantum number ; /l* is the

separation distance in reduced units

n*= n/c J (3)

}(*' is the reduced wave number

}{*' =T = gVimE /qh (4)

2. Hirschfelder, Curtiss and Bird, Molecular Theory of Gases and
Liquids (John Wiley and Sons, Inc., New York 1954), 680.




where E is the energy and ﬁ is the Dirac constant; and

N = hfoi2mE) (5)

is the deBoer quantum parameter. It is convenient, in addition, to

define a reduced effective potential as
~ %z
2 Y 3
fi¥) = fnx) + LUFDA Sy nx?) (6)

so that Eq. 2 becomes

g%t{ ; {3{3*‘ -4t (M)A U= 0. o

If ‘f(ﬂ,*) is zero, the functions U." are closely related to

the Bessel functions and asymptotically approach
] ¥pn ¥
AL s (R "'{LTVZ) . (8)

When f([l*) is not zero but approaches zero at large separations

2

faster than /l* , the function u.l differs asymptotically

from eq. 8 and approaches the function
CAM(A{*N-*— IW/Z +721, ) (9)

where ,’Zl is a constant known as the phase shift. The differential

cross section may be expressed in terms of the n"



a) The Hamilton-Jaccbi equaticn

Let

0 %) »*
U, = eug@ﬂ Y73\ } (109

4
where S(n*) is a complex function. We obtain an equation for S(n)

by substitution of this form into Eq. 4. The resulting equation is
) / 2 1l % Trpk
LA*S (¥ -{S (“*’} i) {E - Jn )} =0 ay

where E* is the reduced energy,

E* = W Yt = E/e (12)

¥ ¥
In the limit /A => @ , for fixed E and a fixed value of

1(1""')[\_*1 5 S(ﬂ*) satisfies the equation

{S 2[1*)}2 = q.’n"’“{E* - ?(ﬂ*)} ) (13)

It is clear from Eq. 13 that, in this limit, S(R*) is purely real
in the classical region and purely imaginary in the non-classical
region. Eq. 13 is the classical Hamilton-Jacobi equation for
Hamilton's characteristic function.3

Returning to Eq. 11, we set

Seary= §,(n*)+{5,(n¥) (14)

3. H. Goldstein, Classical Mechanics (Addison-Wesley, Reading, Mass.,
1959).




where 5,“7*) and safﬂ*)are real functicns. The coupled equations

4
for these two functions are then

% ol !
NS -25S5, =0 (15)
and

(5= (52 -A*s) + war{e*-Fumf =0

This pair of coupled second order equations are easily transformed
into a set of four first order equations. Thus one obtains the

set

/
Si=4 an

4

8,7 Yz (18)

Ayl =244 )

A*gi = 31 - 3;2’ + HZ{E* - ?(/l*)}. (20)

These equations are completely equivalent to the original
Schroedinger equation. Clearly, since the last two equations
are uncoupled from the first two, they may be solved independently

and the resulting solutions integrated to obtain S; (/7*) and Sz(ll*),

4., A set of related equations is-treated in a different fashion
by J. A. Wheeler, Phys. Rev. 52, 1123 (1937).



b. The asymtotic solution
In the numerical sciuticn of these equations, it is convenient
to begin the integration at a iargsz wvaiue of fl*) and integrate
toward the origin. For this purpose, it is necessary to consider the
asymptotic behavior of the four fuscticvns. From Eq. 9, it follows
that asymptotically LLJ[ may also be written as z linear combination

(:)'C*ﬂ* ~Lpe*n ¥ ]
of € and € . Comparing these functions with the
defining equation for S(Il*) s Eg. 14, we conclude that solutions

exist such that 82, approaches a constant for large "L* and S,
» % v ¥ n¥
approaches * X*A n” = 2WYE" " | 1 then follows from

Eqs. 17 and 18 that for these solutions
32-—> O (21)
and
y,—> £ 27VEY (22)

The W.K.B. series solution of the equations gives more accurate
asymptotic forms of the fuactions., This series solution is obtained

by developing H“ as a power series in A* for fixed values of E,x>

and L(H)N*

ap
) A¥m
y, = %@ YA . (23)




If this series is substituted into Eq. 19, we obtain 31 as a series

in A*:

& (m) A%m
Yz = nZ‘ Y, A (24)

214

where
W e, o
Ya = Y, /ZH‘ ) (25)
(1) mq (o) BYMU ()
Yo = 4 /(Z‘juo) -9 Y /f‘Z g,' 2)’ (26)
On substituting these series expressions for 5' and Hz’ into
Eq. 20, we find that
=~ rej
9("‘) = % WT""(E* - f(f(.*), (27)

and
o~/ ~
o= e Fan s - Far))

Eq. 27 is the classical limit since it is the zeroth term in the
Lo * o rs .

expansion in powers of A . In this limit, 92 is zero. These

results are consistent with Eq. 13, the classical limit of Eq. 11.

The higher terms in the series, Eqs. 23 and 24, are quantum corrections.



c¢) The boundary condition at the crigin.

The numerical solution of the equaticns is started at a value
of /Z* sufficiently large that Egs. 27 and 28 represent the functions

N : *

to a good approximation. This value of n is denoted as flo
It follows from Eqs. 13 and 14 that a soclution cof these equations
remains a solution if S,(Il*) and Sz(ﬂr*) are changed by adding
arbitrary constants. The arbitrary additive coustant on i
is associated with the arbitrary phase of a solution (which is not
necessarily well-behaved at the origin) and the arbitrary additive

¥) . . : : . .
constant of ész(f[) is associated with the arbitrary normalization

of the wave function. For numerical convenience, we set

S,m¥*) =85,mn¥)=0 (29)

The solution of the equations representing a wave function which
is well-behaved at the origin is formed from two numerical solutions.
Since the‘Hamiltonian operator is real, it is easily shown that the
real and imaginary parts of a solution are separately solutions of
the equation. From this it follows that the complex conjugate of a
solution is also a solution and furthermore, if the function is not

purely real (or purely imaginary), the complex conjugate is an

5
independent solution. Thus, if

: ¥) ! *) *
0,- eL{S,U& )+ S,n%)} /A oy

5. This is equivalent to saying that the real and imaginary parts of a
solution are themselves independent solutions.




is a solution, then

e -i{ St =i SumR/A¥
Uy = e (31)

is an independent solution. This result is easily shown to be
consistent with Eqs. 19 and 20. Clearly, if S,(ﬂf) s Szf’l*)

is a solution of these equations, “S'(ﬂ.*» ) Sz(ﬂt)is also a
solution. If the first solution is obtained using as the asymptotic
form, Eqs. 27 and 28, with the upper sign for :0) , the second
solution would result from using the lower sign.

From the arguments just given it follows that the general

solution of the Schroedinger equation, Eq. 7, may be written as

(S /p* =S, (n*)/A¥ -18,(nM/a¢ -5,n%) /AX
e’ e e e

u=A, 2 , 0
where Al and Az are arbitrary constants and S, lﬂ‘)and Sz(ﬂ*)
are solutions given asymtotically by Eqs. 21 and 22, with the
upper sign. The condition that the wave function vanish at the
origin is

1S.(0)/A% -S,(0)/A* ~iS.(0/A* =S, /A*
tS,(o/Ae 2 (0 . &LS,"A e 2

g (33)

Ulo)= 0= A,e A,

Thus,

-2( 8§, (e /\*
A/A,= —¢€ . (34)
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Using this relation between ‘AB and ‘Azyj we find that the well-
behaved solution is

SN (S Mnd =i SaNAE 208,6VAY
uin® = Age {8 ” -e € , (35)

The coefficient /\n is determined by the normalization,
From the definition of ﬂa - Eq. 17, and the condition that
S * - : T -~ T .
,(R,) = OJ it follows that
n*
%y *
Sl(ﬂ. )= S* ‘:j| dn . (36)

,

It is convenient to rewrite this result in the form

¥*
fi
S,n*) = 2wYe* (n*-n)) +£*(lj,~ 27 VEF ) dn* (37)

Since the numerical solution is based on the use of the upper sign
in the initial condition, Eq. 27, the integral in the last expression
converges in the limit fl =¥ @@ . Thus, the solution given by

Eq. 35 is asymptotically of the form

* ® /%
. A L R PR L1 CO L7
A e S, @)/ p* ecu ("-p) e‘f,,'* J

u((n¥*) =

@ s % /06
—St@ /A 2iS /A iR () _i‘g‘*(ﬁl-zWE ) dn/A°
e e o

'”A| e (4

(38)

Comparing this expression with the equation defining the phase

shift, Eq. 9, we find that
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a@o
TR O TR AL OV +(nm*>% (g, 29T

where ﬁv is an arbitrary integer.
d) The absolute phase shift
It is of interest to note that the last expression for the

phase shift may be rewritten in the form

Ne = (N+£/2)T +('/A*)§o(3,‘27r753)4n*, (40)

In this form, it is clear that the result is independepnt of the
* ¥
choice of [fl, .and the convention that Sg(ﬂ°>: 0

We evaluate the integer IU by considering a potential
)C(ﬂ*) = X F(n*) (41)

where ;k is a coupling parameter which may be varied continuously.
From continuity considerations, it follows that AV cannot depend

¥*
on A or the energy [E . Using the definition of 3, , Eq. 17,

Eq. 40 may be written as

721: (Nfl/ﬁ)?f +(J/A*)Ii%&w{vsy(ﬂ*)‘se@‘x:" (42)

where

x = 2w VE /N, (43)
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The phase shift n»@ is defined in such a manner that as A =» O

'nlﬁ O . For this value of A, the soluticn cf the Schroedinger
equation corresponding to Eq., 30 is simply related to the first

()
Hankel function ”A‘Q (%) s 1.e.

(1 : . - S pE 1S /A
Z'ﬂl(x)‘-‘ Z{jl(“’ *"ﬂl(”}ze * e , @8

where Jl (X) and ﬂl('l) are the spherical Bessel and Neumann

functions. This function has the asymptotic form

o) L (x - AT/2 -7/2)
'x‘Al (X) — e . (45)

If, for the present, therefore, we restrict S,(O)/A* te lie in

the range

- < S()/A¥ L T (46)

]
it follows from the form of X .Al (%) in the limit X5 O 6 5

that
S(a/N" = -T/2 | (47)

It follows from Eq. 42 that the restriction, Eq. 46, does not affect
4
the result since only the difference between 5,(/7*’/A*and S,(°)//\.

is important, and thus the ambiguity associated with Eq. 47 may be
6. Morse and Feshbach, Methods of Theoretical Physics (McGraw-Hill,
New York, 1953).
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ignored.

It follows from Egs. 19 and 20 that

Yy, % 0 (48)

except at a singularity cf the Schroedinger equation. Therefore,

since

gﬁ(nf) >0 ) (49)

S,(ﬂ.*’ is a monotone increasing functiocn of ﬂ.* . From the
form of Eq. 44, it follows that whenever 7\1(%) is zero, S./Q&*
is an integer multiple of M . Thus, as 7\L(1) goes through

3
successive nodes, S‘/Q& increases by M as illustrated in Fig. 1.

For M sufficiently large the position of the g th node is7

A = (L+2m)T/2 - T/Z ;m>o (50)
Thus,

8, (M) /N = (;m-1)T (51)

When these results are substituted intc Eq. 42, one obtains

N=0 (52)
as the condition on A/ such that 7?1 be an absolute phase

7. Jahnke and Emde, Tables of Functions (Dover Publications,
New York, 1945).



1

Fig.
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From Eq. 40 it fecllows that

oo
- # -y®) dn*
Ne = (”/A)LW” Ji2on (53)

where the superscript B implies that f(/l*) = O . This result
gives the absolute phase shift in terms of the difference in the
phase at the origin of irregular solutions of the Schroedinger
equation which are asymptotically proportional to 1‘;?Cx).
e) The correction term

Since /?o* is taken to be sufficiently large that the first

¥ »

W.K.B. approximation holds for fl >ﬂ° , we may use Eq. 27 to
evaluate the integral in Eq. 39. 1In the asymptotic region the
potential is small compared to the energy E* . Thus the function

may be further approximated by the series

7 z
il?TTG?F-7T}QW*L/ E* *.1T(;§h*7),/44;*3éa
_(3Tas ) (B /E 2+, .

With this series and an explicit form of the potential function

1R

Yi

(54)

the integral correction term in the expression for the phase shift,
Eq. 39, may be evaluated. The numerical applications discussed

later are based on the Lennard-Jones form of the pctential function

f(/l*) =4 ('/R*’z’ - l/ﬂ“) . (55)
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For this case, cue vbtains the expliicit expressicn (to terms of

order

Ns

3 L)
+ { BT oA - LA e s } /7,

(1)) ,
- 4n/2 - St/ - 2TVEF aX/n* - 0N fynfend

(56)

*
+ 12(,(1“/)2/\*3/35*%’2677‘3/70 3 .

It is this expreszion which is evaluated to obtain numerical values

of the phase shifts.

2. Numerical Techniques

The problem of determining the phase shifts has been reduced

in the previous section to that of sclving the coupled differential

equations, Egqs. 17 to 20. The numerical soluticn is carried from

*#
a large value of /7-* , denoted /Z,, , in the direction of

# =
decreasing ﬁ* . At the initial point, Mo S, = 85,50

and 3' and Hz are given by Eqs. 23, 24, 27 and 28 with the

choice of the upper sign in Eq. 27. In the numerical examples,

only the first non-zero terms in the series approximations were

used.

a) The difference equations.

The pair of equations for Y, and Yz , Eqs. 19 and 20,

e ) 8 .
are of a type known as "stiff equations". These equations are

8. J. 0. Hirschfelder, "Applied Mathematics as used in Theoretical
Chemistry, Proc. of Symposia in Applied Math., vol. XV,
Amer. Math. Soc. (1963); also Curtiss and Hirschfelder,
Proc. of Nat. Acad. Sci., 235 (1952).




characterized by extreme stabiiity with respect to solution in one
cirection, in this case in the direction of decreasing /Z*L. The
property generally occurs when the derivative is multiplied by a
numerically small coefficient. Thus these equations become
"stiffer" as A*‘7' O , the condition that the W.K.B. method

be applicable.

Thus the numerical solution of these equations is started by
estimating the values of g, and yz by the W.K.B. approximation,
Eqs. 27 and 28. Then the full equaticns, Eqs. 17 to 20, are used to
continue the solution toward the origin. To do this, backward

2 /
difference methods are used to estimate gz and yz at the point
/tt in terms of the previcus values of yz . This is equivalent
to correcting the W.K.B. approximation for %g by including

,
effects due to 91_ and 82 . The resulting difference equation is

4m=(E*=- F1r})
z
‘P{Zg,_(ﬂ{:) - 92. (ﬁfoz)}
- (£/A) {Hsz_u) - Hzmi’iz)} |67

y,mf) =+

where Z& is the increment in /Z* - a negative value.

To obtain an expression for Eﬂz(ﬂ?) , Eq. 20 is differentiated
implicitly to obtain an expression for y( which is substituted
into Eq. 19. Then the derivatives cf 81 appearing in the
expression for 32’ are again estimated by backward differences.

The explicit expression for gz(nﬁb is then
¢ *
ﬂ' NFf + ZA*gz(ﬂ:&,){gz(ﬂf_ﬁ—yl(ﬂ(.z)}/A

Y (i) = [43}(/1‘- .
»*
-Az{yzm,--,) -Z‘ysz_z) + yzm’g_s)}/Az 55

17
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The stability preperties of these difference equations leads
to a lower limit on the step size 4 which may be used. These
stability properties of the difference eguztions are closely
related to the "stiff™ character 5f the differential equations.
As the turning point is approached, the functions gl(ﬂ*,and 31ﬁﬂ’)
begin to change more rapidly. The minimum step size required for
stability then is no longer sufficiently small that the difference
equations approximate sufficiently well the differential equations.
At this point, the equations lose their stiff character and it is
necessary to use an alternate numerical method.
b) The stability condition.

To investigate the stability of the difference equations

(o} ()

we let the set 9‘:’ and 315 and the set %i and 3,_; be two
exact solutions of the difference equaticns, Egs. 57 and 58. The

perturbations }.i and '31j are defined by

@ .
Yl = Yl + Fud | (59)
and
¢0) .
Yoi = Yai + Fai : (60)

If the solutions are stable the perturbations 34{ and Zzz

L]
decrease as L increases. To investigate the stability, the
solutions, Eqs. 59 and 60, are substituted into the equations,

Eqs. 57 and 58. Since the perturbaticns 3&& and Zzi are

assumed to be small, the resulting equations are linearized. The



resulting pair of equations are

I = é («“j 3'9’; *“011 314.-’)

327. = Z\,b(@(z,egjmv + @tua 3“_9)
where

°‘n§=° for all B
120 =0

c>¢lll

[Zym] [ A/A +‘+{l ng 3:::_1}:’
o(.zz = [19'0)] [A/A Z{z.yzl_, 32"1}]

63 =0

€0)

Lo =~ 19”‘/\' /9

(61)

(62)

(63)

(64)

(65)

(66)

(67)

(68)

19



and

“2Jj =0 ,

&a20 =

- [y [./m watlyi s+ 2813

ola22 = D*H:?ff[ﬂf - 1Ay

123_ A /[l# mz,

4¢ 0

o

(0)
2{-1

»
2y

d

ﬂit-z}/ A]

Clearly a solution of Eqs. 61 and 62 exists of the form

(69)

(70)

(71)

(72)

(73)

(74)

(75)

20



if Q. is a root of the determinental equation

(_‘};:%l’ X a.) i jz‘;%,z

980

Defining

- Q

g e

we obtain the cubic equation for E R
Bo + (B +paEreprY

where

{30 gfo) Z.A /A_*‘z

2 -5 . (76)
E"‘znj e d* (Z %325 € ) 1

(77)

(78)

(79)

Bi= ['/4-A9‘£I/A + 0 J28° - By A+ 8O - s;?.,/z}/A”] (80)

B2 -[ Vo + DY/ + Ayar., /28 = Wit B {Yai, - 32’.1/1}/1\.*] 81)

and

21



{33 = /4y (82)

¥ ©) ©
Eq. 78 gives t as a function of A 5 A 5 8,1' and yzj

and from the form of the 3"5 and 'bzm , it follows that the

difference equations are stable if

1€ > 1.0 . (83)

. . * o
If we restrict our attention to [U sufficiently far from the

classical turning point, we may to a reasonable approximation
neglect all terms in the PA» involving A s A and 312

and approximate Eq. 78 by

ey = Atyi /A (84)

where

ﬂE): ~E/4 +E%2 -E/4 (85)

Clearly, we need consider only ;{E))O . The cubic function ’f(E)

is illustrated in Fig. 2. From this figure it is seen that if

(0)2 *2

Ayi A<, (86)

the real root of Eq. 84 corresponds to an unstable solution. On

the other hand, if

22
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the real root of Eq. 84 leads to a stable solution. It may be
shown that if the condition, Eq. 87, holds, the complex roots of
the cubic also satisfy the condition of stability. Thus, to the

approximation being considered, the condition of stability is that

Al > A*/Iy.‘{" : (88)

If A satisfies this condition, the 3"” and ‘310‘ decrease as m

increases. Clearly, it is possible to obtain a more exact

stability criterion by obtaining a mcre accurate solution of Eq. 60.

¢) The numerical solution
As the solution proceeds toward the turning point, szn*) and
/ 4%
gz(n ) become large and at some point Eqs. 15 and 16 become no
longer "stiff'. When this region is reached, an ordinary Runge-
Kutta9 technique may be used to solve the equations. This method

may be used to complete the numerical solution of the equations.

3. The numerical results.

To illustrate the present numerical method of evaluating the
phase shifts we present the following exploratory results. To

carry out a numerical evaluation, it is necessary to choose four

#

numerical parameters; a starting point /lo , an interval size

in the stiff region A , a "join point" l‘lé* at which the

9. W. E. Milne, Numerical Solution of Differential Equations
(John Wiley and Sons, New York, 1953).

#

24
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difference equations are changed from the stiff form to the Runge-
Kutta equations, and an interval size in the Runge-Kutta region,
denoted by ASKK . In addition, values of three physical
parameters must be chosen. These may be taken to be E* s A*
and 1 . In the present calculations, the function f(n*) is
taken to be of the Lennard-Jones form, Eq. 55.

To investigate the effect of varying the numerical parameters,

. 10
a number of calculations were made for

E*: 0.011%¢

N = 0.3159

and

L = 0.0

The resulting values of the phase shift are illustrated in

Fig. 3. The values in Fig; 3 may be compared with Bernstein’s

value10 of 2.551 obtained by direct integration of the Schroedinger

equation using the Runge-Kutta method. These results indicate

that for this case, the optimum values of the numerical parameters

are /'(:‘ about 6.0, 9Aﬂ greater than 0.25, ARK between

-0,01 and -0.0025 and /7§) between 3.25 and 4.00. The functions

Y)Y, S /AT an S /N tr L =0,
E*‘-' 0.0228 and A* = 0.3158 are illustrated in Figs. 4-7.
It is of interest to point out that the stability condition,

10. These values correspond to Bernstein's A = 3,.B = 125 and

= 0. See R. B. Bernstein, J. Chem. Phys. 33, 795-804
(1960).
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Eq. 85, indicates that these calculations were made using an unstable
value of A . However, the errors 3&9% and 32.0» due to the use
of the W.K.B. approximation and round-off errors were small enough,
and the number of steps few enough, that the accumulated error was
not significant;

Table 1 gives values of the phase shift for ,(2 o ,A*=0-3/57
and four values of E * all obtained using A:'.X.SJ ARK""-N s
fl:=3.15, and ﬂ::b.o ; the results agree to the figures

given with Bernstein's results.

TABLE 1

»*
Values of 'rlo are shown for four values of E

when ,l = 0, A_* = 0.3158.

¥
E .0228 .0628 .1238 . 2046

no 2.551 -0.484 -3.140 -5.565

When 1 is nen-zero, it is possible to have one or three
turning points. The results given in Table 2 are for 1 = 15,
* ¥
A = 0.3158 and four values of E such that there is only one
turning point. These results were obtained taking A = -0.25,
* *
and ARK = -0,01 and the values of flc and  fl,

*
indicated. The phase shift for E = 0.0628 is in poor




TABLE 2

»*
(E*) is shown for several E*, R: and /to .
5

E¥ | oo '

. 2526 0.2046 0.1238 0.0628
n¥ | RE | MLEN] Ml | NlED| Tl
3.00 10.0 3.806 3.214 0.489 -.008
3.00 15.0 3.804 3.211 0.484 ~.020
3.50 10.0 3.806 3.215 0.489 +.078
3.50 15.0 3.804 3.212 0.484 +0. 064
4.00 10.0 3.807 3.215 0.489 0.103
4,00 15.0 3.804 3.212 0.487 0.100
5.00 10.0 3.807 3.215 0.490 0.108
5.00 15.0 3.804 3.213 0.489 0.105
Reference 10 3.805 3.212 0.490 0.110

A1l reference values have an uncertainty of +.002 .,
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*

agreement with that of Bernstein for flg< 4.00, because the turning
*
point occyrs at a much larger value of /1* , {about M = 3.0),
E*
than for the other values of
11
The results shown in Table 3 describe a series of calculations
* *
with constant values of E and (‘2 + 1/2)4\ and varying values
of the quantum parameter, Jﬁk . The conditions are such that
there are three turning points. For<£5> 60, it is necessary to use
a much smaller ARK in order to follow the solution through the
non-classical region, since as O , barrier penetration becomes

difficult.

4. Conclusions

It is found that accurate values of the phase shifts may be
obtained by integration of the quantum mechanical Hamilton-
Jacobi equation. An advantage of this technique is that one
deals with more slowly varying functions than the radial wave
function. The application of the boundary condition that the
wave function vanish at /l*=0 is straightforward. Further, a
new expression for the absolute phase shifts is obtained which
may be useful in other applications. Further study of the method
may result in methods of predicting the optimum values of the
numerical parameters and increased efficiency of the method in

the region of the turning point.

11. These calculations repeat some unpublished results of
S. Imam-Rahajoe, obtained with the computer program
developed by Bernstein.



TABLE 3

¥
Values of 72 are shown for E” - 0.4 and

(2+'/2)A* = 7.949, Results were obtained using
A = -0.25, AgK = -0.01, MA¥ = 3.25, and
n.* = 10.0.
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n

% present
,‘Z /s results ref.

11

10 0.75703 1.073 1.075

20 0.38775 4. 366 4,368

40 0.19627 6.402 6.396

60 0.13139 10.935 10.790

100 0.07909 unstable 17.070
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